
Vlserver Memory Cache

Mark Vitale
OpenAFS Workshop 2019

19 Jun 2019

vlserver performance problems?

For typical OpenAFS sites, fileservers and cache
managers have the highest impact on overall cell
performance; vlserver performance is close to
the bottom of the list of bottlenecks.

This is not a typical site…

Site overview

• One of the world’s largest OpenAFS sites
• ~120 cells

• a number of RW cells
• many regional RO cells

• ~1300 servers
• 140,000+ clients
• ~40,000 containers
• Millions of volumes

• Primary use: software distribution

High vlserver RPC rate

• VLDB: several million volume entries
• constant VLDB updates

• cross-cell volume replication (in-house tooling)
• intra-cell volume replication (vos release)
• volume housekeeping (vos move, delete, etc.)

• constant VLDB lookups
• normal lookups
• normal negative lookups
• abnormal negative lookups

The problem

• vlserver throughput bottleneck
– Most common RPC: VL_GetEntryByNameU

from cache manager
• Average execution time 3.1 ms ~= 320 calls per

second max
• How do we know this?

– vlserver option: -enable_process_stats
– RPC: RXSTATS_GetProcessRPCStats
– utility: rxstat_get_process (src/libadmin/samples)

• At peak times, this limits performance of entire cell

Root cause

• Lookups take too long because of excessive
VLDB IO
– average over 100 read syscalls for a normal

lookup
– even higher for negative lookups
– discovered via additional tracing (truss/DTrace)

• Excessive IO because of scalability issues in
VLDB format

VLDB: Volume Location DataBase

• “Database” is a gross misnomer
It’s not a true database, but a structured blob of bytes; contents are
addressed by physical offset ("blockindex").

• VLDB format (version 4):
• ubik header
• vl header

– version, EOF pointer, free pointer, max volid, stats, etc.
– fileserver table
– embedded hash tables
– pointer to first extension block

• extension block(s)
• volume entries

VLDB embedded hash tables

• Allow vlserver to find a requested volume entry without sequentially
scanning entire VLDB

• Four tables in all:
– one for volume names
– one each for RW, RO, and BK volume ids

• Small fixed hash size – 8191 “buckets”
• Hash chains are linked via “next” blockindex pointers in each entry
• Maintained automatically as volumes are added or removed

– New entries are inserted at the head of the chain, in the vl header

Exacerbating circumstances

• We can’t increase the number of buckets (shorten the hash
chains) without changing the VLDB format.
1.7 million volume entries / 8191 hash buckets = 213
entries average hash chain length

• An ubik read is required to follow each entry on a given
hash table chain.

• The vlserver ubik buffer pool is fixed at 150 1k ubik_pages
(up to 6 entries/page)
– optimal for sequential VLDB lookups (‘vos listvldb’)
– easily overwhelmed by multiple parallel random lookups

More exacerbations

• Physical VLDB IO is done via syscalls, which
are thread-synchronous.
– vlservers (1.6.x) run under OpenAFS lightweight

processes (LWP), which simulate multi-
threading via cooperative scheduling on a single
operating system process.

– the entire vlserver blocks all threads when any
thread (LWP) must perform a physical disk
read.

“It’s worse than that, Jim”

• New volumes are inserted at the head of its hash
chain.
– Therefore, old volumes (e.g. root.afs, root.cell) tend to

be near the end of each hash chain.
– Thus, the volumes most likely to require frequent

lookups are also the most expensive to lookup.

• Conclusion: vlserver lookup performance degrades
significantly with VLDB size for large (>50,000
volumes) VLDBs.

Early ideas

• Tune volume lookup cache in cache managers (afsd –volume <nnn>)
– too many clients; does not address root cause

• Pthreaded ubik
– early versions had many severe problems; now stable in 1.8.x series

• mmap the VLDB
– judged unlikely to be accepted upstream
– reduces but does not eliminate high syscall overhead and single-threading

• Load entire VLDB into existing ubik buffers
– lots of unknowns; never prototyped or researched further

• Optimize hash chain contents by moving frequently requested volumes
volumes toward the head of the hash chain

– some limited improvement possible; does not address root cause

Proposed solution

• Use in-memory hash tables to cache
information from the on-disk hash tables
– Only chase the on-disk hash chains once
– cache the blockindex for each volume

• don’t prescan VLDB to preload cache at
restart
– too slow – need fast turnaround on restarts
– too wasteful – not all volumes are looked up

Hash algorithm requirements

• high load factor
• hash chains as short as possible
• Reasonable performance and scalability for

common operations: insertion, deletion,
lookup

• avoid runtime rehash/resize

Cuckoo hashing

• Distinctives
– Hash table split into two (or more) partitions, each with its own

independent hash function
– fixed size and slots - no hash chains
– "cuckoo" eviction

• The cuckoo does not build its own nest, but instead evicts the eggs from the nests of other
birds and substitutes its own.

• Insertion algorithm:
• Hash and insert into any empty slot in the appropriate bucket in first partition.
• If no empty slots, try again for second partition.
• If still no empty slots, choose an evictee slot (LRU) and insert new entry there.
• Repeat insertion with the former contents of the evictee slot.
• A loop limit prevents endless insertion; when the limit is hit, the last “egg” is effectively

evicted from the cache.

Cuckoo hashing pros and cons

• Advantages
– Good performance

• Space (memory) very high load factor before resize needed
• Time (cpu) predictable, well-behaved insertion & lookup order (big-O)

– Runtime rehash/resize is optional

• Disadvantages
– not well known
– not already in OpenAFS tree

Cuckoo hashing papers

• Rasmus Pagh and F. Rodler. Cuckoo Hashing. Journal of
Algorithms 51 (2004), p 122-144.

• Rasmus Pagh. Cuckoo Hashing for Undergraduates.
Lecture at IT University of Copenhagen, 2006.

• Eric Lehman and Rina Panigrahy. 3.5-Way Cuckoo Hashing
for the Price of 2-and-a-Bit. Conference: Algorithms - ESA
2009, 17th Annual European Symposium, Copenhagen,
Denmark Proceedings. DOI: 10.1007/978-3-642-04128-
0_60 · Source: DBLP

vlserver implementation

• two cuckoo hash tables
– one table for volume names
– one unified table for RW/RO/BK volume ids

• each table has 2 partitions
• each partition has configurable number of buckets

– vlserver -memhash-bits <log2(entries)>

• each bucket has configurable number of ‘slots’
– vlserver -memhash-slots <slots>

• instrumentation & debugging
– vos vlmh-stats [options]
– vos vlmh-dump [options]

vlserver negative cache

• Optional set of cuckoo hash tables for
negative lookups, i.e. VL_NOENT “volume
not in VLDB”
– one table for volume names
– one unified table for volume ids (RW, RO, BK)

• Requires positive cache
• Size computed from specified # of entries:

– vlserver –negcache <#entries>

Operation

• Reads
– Each positive or negative lookup is automatically cached in the

appropriate table.

• Writes (vos volume operations)
– New, changed, or deleted entries never modify the positive cache

because the commit may fail; instead, entries are deleted when
detected invalid on the first subsequent read (“lazy” invalidation).

– However, writes MUST immediately invalidate any affected
negative cache entry on the syncsite and all non-sync sites.

• Synchronization events
– All caches are invalidated when the database is replaced on a given

server.

Results

• At least 40x real-world improvement in
vlserver read (lookup) throughput

• Vlserver throughput is no longer the limiting
bottleneck during peak cell loads

Futures

• upstreaming

This slide intentionally left blank

